Problem 19

Suppose that, while lying on a beach near the equator watching the Sun set over a calm ocean, you start a stopwatch just as the top of the Sun disappears. You then stand, elevating your eyes by a height $H=1.70 \mathrm{~m}$, and stop the watch when the top of the Sun again disappears. If the elapsed time is $t=11.1 \mathrm{~s}$, what is the radius r of Earth?

Solution

Start by drawing a picture of a person lying on the Earth with a line of sight barely touching the top of the Sun.

Then the person stands up to view more of the Sun.

The Earth then rotates an angle θ as the Sun disappears below the horizon.

Notice the right triangle in this picture.

Relate the angle θ with the two known sides.

$$
\cos \theta=\frac{R}{R+1.70}
$$

The aim is to solve for R, the radius of the Earth (in meters). Invert both sides.

$$
\frac{1}{\cos \theta}=\frac{R+1.70}{R}
$$

Split up the fraction on the right side and use the fact that $\sec \theta=1 / \cos \theta$.

$$
\sec \theta=1+\frac{1.70}{R}
$$

Isolate the term with R.

$$
\sec \theta-1=\frac{1.70}{R}
$$

Invert both sides again.

$$
\frac{1}{\sec \theta-1}=\frac{R}{1.70}
$$

As a result, the formula for the radius of the Earth is

$$
R=\frac{1.70}{\sec \theta-1}
$$

To determine θ, use the fact that the Earth rotates 2π radians every 24 hours at the equator.

$$
\omega=\frac{2 \pi \text { radians }}{24 \text { hours }}
$$

Convert this rotational speed to radians per second.

$$
\omega=\frac{2 \pi \text { radians }}{24 \text { hetris }} \times \frac{1 \text { hour }}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=\frac{\pi}{43200} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Multiply this rotational speed by the measured time to get θ.

$$
\theta=\omega t=\frac{\pi}{43200} \frac{\mathrm{rad}}{\phi} \times 11.1 \phi=\frac{37 \pi}{144000} \text { radians }
$$

Therefore, the radius of the Earth is

$$
R=\frac{1.70}{\sec \frac{37 \pi}{144000}-1} \approx 5.22 \times 10^{6} \mathrm{~m}=5.22 \times 10^{3} \mathrm{~km} .
$$

